Multivalued Fundamental Diagrams of Traffic Flow in the Kinetic Fokker--Planck Limit

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Vlasov-Fokker-Planck Type Kinetic Models for Multilane Traffic Flow

Abstract. We discuss rationales for kinetic descriptions of traffic dynamics and present a class of new models of VlasovFokker-Planck type. These models incorporate (nonlocal and time-delayed) braking and acceleration terms which are consistent with realistic time scales. Correlation assumptions are made such that braking and acceleration terms depend only on macroscopic densities and the relat...

متن کامل

Diffusion Limit of the Vlasov-poisson-fokker-planck System

Abstract. We study the diffusion limit of the Vlasov-Poisson-Fokker-Planck System. Here, we generalize the local in time results and the two dimensional results of Poupaud-Soler [F. Poupaud and J. Soler, Math. Models Methods Appl. Sci., 10(7), 1027-1045, 2000] and Goudon [T. Goudon, Math. Models Methods Appl. Sci., 15(5), 737-752, 2005] to the case of several space dimensions. Renormalization t...

متن کامل

High-Field Limit for the Vlasov-Poisson-Fokker-Planck System

This paper is concerned with the analysis of the stability of the Vlasov-PoissonFokker-Planck system with respect to the physical constants. If the scaled thermal mean free path converges to zero and the scaled thermal velocity remains constant, then a hyperbolic limit or equivalently a high-field limit equation is obtained for the mass density. The passage to the limit as well as the existence...

متن کامل

Weak-Coupling Limit. II On the Quantum Fokker-Planck Equation

In a recent work we have found a contraction semigroup able to correctly approximate a projected and perturbed one-parameter group of isometries in a generic Banach space, in the limit of weak-coupling. Here we study its generator by specializing toW ∗-algebras: after defining a Physical Subsystem in terms of a completely positive projecting conditional expectation, we find that it generates a ...

متن کامل

Existence of Global Weak Solutions to Fokker–planck and Navier–stokes–fokker–planck Equations in Kinetic Models of Dilute Polymers

This survey paper reviews recent developments concerning the existence of global weak solutions to Fokker–Planck equations with unbounded drift terms, and coupled Navier–Stokes–Fokker–Planck systems of partial differential equations, that arise in finitely extensible nonlinear elastic (FENE) type kinetic models of incompressible dilute polymeric fluids in the case of general noncorotational flow.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Multiscale Modeling & Simulation

سال: 2017

ISSN: 1540-3459,1540-3467

DOI: 10.1137/16m1087035